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Abstract— This article presents the principle of coupling fun-
damental and upper eigenmodes of a ferrite cavity for demon-
strating a dual-band stripline circulator. The weak field operation
is used for increasing circulation bandwidths and choosing the
ratio between the two circulation central frequencies. Indeed, an
eigenmode study is presented which identifies parameters that
influence the working frequencies and the circulation direction,
which can be either the same between the first and the second
bands (unidirectional circulator) or different (bidirectional cir-
culator). Two prototypes of dual-band circulators (uni- and bidi-
rectional) have been designed and their measurements validate
the developed methodology based on modal analyses.

Index Terms— Bidirectional, dual-band, ferrite, modal analy-
sis, unidirectional, upper modes, Y-junction circulators.

I. INTRODUCTION

FERRITE circulators are nonreciprocal devices commonly
used in microwaves to connect a transmitter (TX)/receiver

(RX) system to a single antenna or to isolate RF sources.
The expansion of multiband systems [1] has led to the
development of RF functions, such as antennas or filters, that
can work simultaneously over several frequency bands. While
the literature presents many studies on multiband antennas or
filters [2]–[6], only a few articles present multiband circulators
[7]–[9]. However, the design of circulators operating in several
frequency bands is necessary to design complete multiband
systems and maintain insulation while reducing space require-
ments.
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Ferrite circulators have been the subject of many researches
for several decades [10]–[15]. Most of the researches are based
on the study of reverse polarization eigenmodes in ferrite
cavities and their pairing to obtain a circulation function [10],
[11], [13]. In most cases, only fundamental modes are excited,
leading to a single-band circulation phenomenon [10], [11].
Among these references, two distinct operation ways can be
distinguished: the strong and the weak field operations. The
main advantage of designing a circulator working in a weak
field condition is that wider circulation bandwidths (BWs)
can be achieved as long as they can be successfully matched
[11], [16]. Indeed, compared with strong field operations,
impedance matching is more difficult to obtain and often
requires complex central conductors [17]. These two modes
of operation have already been widely studied, but only for
circulators operating on a single frequency band.

Indeed, only a few studies on dual-band circulators
have already been presented in the literature [7]–[9].
Razavipour et al. [8] designed a dual-band circulator based
on waveguide, while Turki et al. [7] developed, realized, and
measured a stripline dual-band circulator for the first time.
The latter present that the second circulation band is obtained
by coupling the upper modes in addition to the fundamental
modes usually used. However, this circulator operated with a
polarized ferrite in strong field conditions leading to limited
BWs and requires the use of bulky magnets. Moreover, the
two operating bands are strongly linked and the frequency gap
between these two working bands is very difficult to choose.

The main objective of this work is to develop a method-
ology for designing a circulator working on two preselected
frequency bands. Indeed, we will show that working in the
weak field area and with a complex central conductor will
improve the BW while choosing the two central circulation
frequencies.

Section II will present an eigenmode study of the resonance
frequencies in a ferrite cavity. The frequency dependence
of eigenmodes is studied according to the saturation mag-
netization, the ferrite disks’ radius, and the shape of the
central conductor. The purpose of this study is to identify the
parameters that affect the frequency ratio between 1) counter-
rotating modes to increase the impedance BW and 2) the
fundamental and upper modes to show how the frequency gap
between the circulation bands can be modified.
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Fig. 1. Curves of μ term of the Polder’s permeability tensor as a function
of frequency (Hi = 51 kA/m, 4πMs = 1450 G, and �H = 0.16 kA/m).

This section will also highlight that an inversion in the order
of appearance of the upper modes can occur when changing
the shape of the central conductor. This interesting property
will be used to change the circulation direction between the
first and the second operating frequencies.

At the end of Section II, two central conductors are cho-
sen for designing, and in Section III, two circulators are
chosen for designing: one with unidirectional circulation and
the other providing a bidirectional circulation. Indeed, this
section will exhibit the coupling of modes within the two
circulation frequency bands, simultaneously. The measurement
of prototypes will validate the proposed methodology and their
performances will be compared with those of the circulators
already produced in strong field [7].

II. MODAL ANALYSIS

A. Eigenmodes’ Resonance Frequencies’ Computation

The nonreciprocal properties of passive circulators are
obtained using ferrite materials. These materials are ceramics
with a high permittivity and permeability tensor models have
been defined to characterize their anisotropy [18]–[20]. In
this study, only saturated ferrites are used, which allow the
Polder’s permeability tensor model [19] to be implemented.
Fig. 1 shows the frequency dependence of Polder’s tensor
diagonal term μ and highlights the existence of two distinct
areas, separated by the gyromagnetic resonance (GR). The
frequency band before the resonance is called the strong field
operating area, while the second operating zone, located after
the resonance, is the weak field area.

The key element in the development of dual-band circulators
is based on an eigenmode analysis because it determines both
their working frequencies and the circulation direction.

This eigenmode analysis is based on cavities (Fig. 2) com-
posed of two ferrite disks with a central metallic conductor,
which is usually a disk of same diameter as the ferrite disks.

Eigenmode studies of resonant cavities using ferrite mate-
rials [7], [13], [21], [22] use either simple models when
boundaries are assumed to be perfect magnetic walls or more
complex models when considering the real interface between
the ferrite resonator and the dielectric medium surrounding
it. The latter shows pairs of counter-rotating hybrid modes
HE±nm where (n, m) ∈ N2, close to those obtained in mea-
surement [13]. The integers n and m represent the azimuthal

Fig. 2. Ferrite resonator model.

Fig. 3. Stationary pattern issued from the HE±nm modes.

and the radial variations, respectively. A numerical method to
determine the eigenmodes’ frequencies in the ferrite cavity is
presented in [7] and shows a good agreement with analytical
and experimental frequencies.

In this article, the numerical method presented in [7] is
combined with a MATLAB program to generate charts pre-
senting the frequency dependence of eigenmodes according
to ferrite intrinsic parameters. This method starts with the
electromagnetic (EM) simulation of a structure, weakly excited
with magnetic probes. Then, a mapping of the electric and
magnetic fields in the ferrite disks allows the identification of
the modes, that is, the (n, m) values.

Fig. 3 shows the first five modes, with the mapping of their
H-fields in a cutting plane at half the height of the upper ferrite.

The combination with the MATLAB code allows the sweep-
ing of some parameters (dimensional or intrinsic parameters)
and the study of the evolution of eignemodes’ resonance
frequencies as a function of these parameters. An example
presented in Fig. 4 shows the internal dc magnetic field (Hi)
sweeping in strong and weak fields for a ferrite circular
cavity with a radius of 6.6 mm and a saturation magnetization
4πMs = 1450 G.

These results highlight the differences between strong and
weak field operating modes.

1) Counter-rotating modes are closer to each other for
the strong field, while they are more distant in weak
field, that is, the frequency gap between counter-rotating
modes is larger in weak field.

2) The order of appearance is not always the same in
weak field, which implies that the upper modes can be
interposed between the pair of counter-rotating modes
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Fig. 4. Eigenmodes’ resonance frequencies in a ferrite cavity as a function
of the internal static magnetic field (Hi), in (a) strong field and (b) weak field,
calculated by a numerical method (Rferrite = 6.6 mm and 4πMs = 1450 G).

HE±11. Indeed, in Fig. 4(b) the HE+21 mode appears
before the HE−11 mode.

It should be reminded that the objectives of this article are
to develop a dual-band circulator with wider BWs than those
presented in the literature and with a ratio between the two
working frequencies that can be chosen.

Single-band studies presented in [22] have shown that a
large frequency gap between counter-rotating modes leads to
wider BWs. Therefore, considering all the previous interme-
diate conclusions, the weak field operation is chosen for this
work, and the next paragraph will detail the effect of other
parameters on eigenmodes.

B. Parametric Study

Resonance frequencies of eigenmodes are influenced by
many parameters, and even if many studies deal with their
variations [11], [22], none of them tried to adjust the frequen-
cies of the upper modes HE±21 with those of HE±11.

Thanks to the numerical model described in the previous
paragraph (Section II-A), the influence of the ferrite radius,
the saturation magnetization, and the shape of the central
conductor are discussed.

1) Influence of 4πMs and Ferrite Radius: The curves
in Figs. 5 and 6 show the variation in the eigenmodes’
resonance frequencies in a ferrite cavity, as a function of
the saturation magnetization (4πMs) and the radius of ferrite
disks, respectively.

These curves show a first overview of how eigenmodes’ res-
onance frequencies can be modified in ferrite cavities. Indeed,

Fig. 5. Computed eigenmodes’ resonance frequencies in a ferrite cavity as
a function of saturation magnetization (4πMs). Model parameters: εr = 14,
Rferrite = 6.6 mm, and Hi = 51 kA/m.

Fig. 6. Computed eigenmodes’ resonance frequencies in a ferrite cavity as a
function of ferrite disks radius, Model parameters: εr = 14, 4πMs = 1450 G,
and Hi = 51 kA/m.

by modifying the saturation magnetization (Fig. 5), the upper
modes’ configuration can be modified. For example, depending
on the saturation magnetization, the HE+31 eigenmode can
be above the HE±21 modes, interposed between them, or
between HE±11.

The eigenmode resonance frequencies also depend on the
radius of the cavity (Rferrite). Indeed, it influences both the
resonance frequencies’ values and the frequency ratio between
fundamentals and upper counter-rotating pairs of modes.

It therefore appears that these different parameters can
be arranged to obtain two operating bands at predefined
frequencies. However, a major disadvantage when using the
weak field operation is that the use of a central disk conductor
is not always possible if the dielectric surrounding the ferrite
disks is air. Indeed, the impedance of the lines presented at the
dielectric ferrite interface is too low to be realistic [11]. The
most common solution to address this issue is to use different
central conductor’s shapes, rather than a disk.

2) Influence of Central Conductor Shape: The classical
conductor’s shapes are based on a WYE configuration [Fig.
7(a)] [23] or a WYE configuration with stubs [Fig. 7(b)]
studied in [24].

A first study on the basic WYE shape has been carried out.
In this framework, the impact of the width W [Fig. 7(a)] of
the WYE line is studied and presented in Fig. 8.
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Fig. 7. (a) Central conductor WYE and (b) WYE with stubs.

Fig. 8. Computed eigenmodes’ resonance frequencies in a ferrite cavity as
a function of linewidth (W ) [Fig. 7(a)]. Model parameters: εr = 14, 4πMs
= 1450 G, Hi = 51 kA/m, and Rferrite = 6.6 mm.

Several conclusions can be extracted from the curves pre-
sented in Fig. 8.

1) The width W has a higher influence on the upper modes.
Indeed, with low values of W (less than 1.5 mm),
the frequency gap between the eigenmodes HE±11 (the
central frequency of the HE+11 and HE−11 modes) and
HE±21 is more than 5 GHz, while with higher values
of W, the gap between HE±11 and HE±21 frequencies is
less than 3 GHz.

2) An inversion of the order of HE±21 modes’ appearance
occurs when W = 3 mm. Indeed, above this width, the
HE−21 mode appears before the HE+21 mode, while for
narrower line widths, the HE+21 mode appears before
HE−21. This order of appearance of these modes is
of great importance since Section III will show that it
defines the circulation direction, which can be either the
same between the first and the second bands (unidirec-
tional circulator) or different (bidirectional circulator).

The WYE topology with stubs presented in Fig. 7(b) is
also studied with the sweep of the linewidth W of the central
conductor. Fig. 9 shows the frequency dependence of modes
with the modification of the width.

With this central conductor, the same phenomena can be
found. Indeed, the ratio between the pairs of modes varies
and the order in which the upper modes appear depends on
the W value. Moreover, new modes appear around the lower
frequency band. These modes come from a change in the sign
of the effective permeability combined with the presence of
stubs. One mode is close to the HE+11 mode, while the other
one is similar to the HE−11 mode. These modes are close to
the fundamental ones since their mapping show an azimuthal
variation (n = 1) and a radial variation (m = 1). To simplify

Fig. 9. Computed eigenmodes’ resonance frequencies in a ferrite cavity as
a function of linewidth (W ) [Fig. 7(b)]. Model parameters: εr = 14, 4πMs
= 1450 G, Hi = 51 kA/m, Rferrite = 6.6 mm, θ = π /3 rad, Lstub = 6.2 mm,
and Wstub = W .

TABLE I

PARAMETERS INFLUENCING EIGENMODES’ RESONANCE FREQUENCIES

the classification, they have been referenced as the HE−11 and
HE+11 modes.

This modal study based on a numerical method showed that
several parameters can be adjusted to change the frequencies
of eigenmodes. Table I summarizes the results of these modal
studies. The evolution of the ratio between the pairs of modes
HE±11 and HE±21 is presented with the � f 2/ f 1 column.
The parameter � f +/f − indicates the frequency gap variation
between the positive and negative counter-rotating modes. The
last column corresponds to the opportunity to change the order
in which the upper modes appear.

Table I identifies which parameters need to be changed
according to the expected eigenmodes’ frequencies, which are
directly linked to the circulator working frequencies. Indeed,
the operation of the circulator and its performances will be
governed by these modes. This will be discussed in the next
paragraph, which will link the eigenmode analysis to the EM
study.

C. Eigenmode Analysis and Configuration of the Final
Resonator

The eigenmode analysis is linked to the circulation, and
therefore changing the frequency of modes and their order
will influence the circulation phenomenon. The parameters
influencing the resonance frequencies of the eigenmodes have
been identified.

To understand the influence of the appearance order of the
modes on the EM parameters, the modal results presented in
Fig. 9 are used since they show a clear inversion of the HE−21

and HE+21 modes (when W = 2.2 mm).
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Fig. 10. Computed eigenmodes’ resonances frequencies in a ferrite cavity
as a function of linewidth (W ) [Fig. 7(b)]. Model parameters: εr = 14, 4πMs
= 1450 G, Hi = 51 kA/m, and Rferrite = 6.6 mm.

Therefore, a WYE with stubs’ configuration for the central
conductor is chosen to develop two circulators with different
linewidth values, that is, W = 1.5 mm and W = 2.8 mm. The
ferrite disks of both resonators are identical, as well as their
internal dc magnetic field.

Fig. 10 shows the results of Fig. 9 and points out the two line
widths W previously identified. The circulation phenomenon
occurs when the pairs of modes are excited. Therefore, for a
dual-band circulator, both the HE±11 and HE±21 pairs need
to be excited. If excited, the circulation frequency takes place
near the middle of each pair.

From Fig. 10, the expected circulation frequencies for W =
1.5 mm are around 5 and 10.5 GHz, while they are about 6 and
10.5 GHz for W = 2.8 mm. Moreover, the order of appearance
of the upper modes HE±21 is inverted when comparing the
two cases, which will result in the inversion of the circulation
direction.

These two resonators lead to the design of two circulators
with different operating conditions (uni- and bidirectional)
presented in Section III.

III. DUAL-BAND CIRCULATOR DESIGN

In this section, ferrite resonators and central conductors
previously defined are used to design two different circulators.
The material used for ferrite disks is a Y215 type which has a
saturation magnetization of 1450 G, the internal dc magnetic
field within the ferrite is 51 kA/m, and the relative permittivity
is 14. It should be noted that the manufacturer gives this
relative permittivity of 14 with an accuracy of ±5%. The first
circulator will have a unidirectional operation with circulation
phenomena around 5 and 10.5 GHz. The second circulator will
have a bidirectional operation, that is, with the two circulation
phenomena will occur in the opposite directions around 6 and
10.5 GHz.

A. Unidirectional Dual-Band Circulator

This first circulator has a central conductor WYE with
stubs defined in Fig. 7(b) with line widths of 1.5 mm. Using
the previous methodology on the uncoupled resonators, the
eigenmodes’ frequencies are computed. The results presented
in Fig. 11 show that each |S11| peak corresponds to the
eigenmodes presented in Fig. 10.

Fig. 11. Central conductor WYE with stubs with W = 1.5 mm and EM
simulations of uncoupled ferrite resonator.

Fig. 12. Simplifies numerical model for outer lines’ sizing.

As shown previously, the fundamental eigenmodes HE±11

are located around 5 GHz and the upper modes are around
10.5 GHz. In this configuration, the HE−21 mode appears first
and therefore before the HE+21 mode.

The design of this resonator is not enough to obtain a
circulation function, because in this case, the modes are not
coupled. To couple the counter-rotating modes, the analytical
methods are available for central conductors of disk type [10],
[25] and for complex conductors such as WYE with stubs [24].
However, these coupling methods only deal with fundamental
modes to achieve single-band circulators. Here, the objective
is to obtain a dual-band operation by coupling fundamental
and upper modes simultaneously, so these methods cannot be
used. Therefore, a numerical method is used with the EM
simulation software CST MWS. Striplines are added outside
the ferrite resonator to complete the three symmetrical lines
of the junction (Fig. 12).

The width S of these outer striplines adjusts the coupling
of modes. To determine the width of the stripline allowing the
ideal coupling of the fundamental and upper modes simul-
taneously, a parametric study is performed and presented in
Fig. 13.

The stripline width that allows the simultaneous coupling of
the first and the second bands with 20 dB of return loss (RL)
is S = 4 mm. With the height of the stripline fixed by the
height of resonators, the 4-mm-wide line has a characteristic
impedance of 50 �. Therefore, it is not necessary to add a
transformer on this circulator and a 50-� SMA connector can
be directly integrated and soldered to this line.

At this stage of the study, the dc magnetic field inside the
ferrite disks (Hi) has always been considered as homogeneous,
uniform, and equal to 51 kA/m. In the reality, the dc magnetic
field is obtained by permanent magnets on each side of these
disks and the field emitted by these magnets is not uniform and
is affected by edge effects. These effects have an impact on the
dc magnetic field inside the ferrite disks’ value, which will not
be the same throughout the ferrite. Therefore, a magnetostatic
(MS) study is carried out to dimension the magnets which will
allow an internal field Hi, as stable as possible in the ferrite
and as close as possible to the value determined during the
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Fig. 13. EM simulations of Fig. 12 model with Fig. 11 central conductor
and for different linewidths.

Fig. 14. Complete design of the unidirectional dual-band ferrite circulator.

Fig. 15. MS-EM co-simulation S-parameters.

resonator dimensioning (Hi = 51 kA/m). MS simulations are
performed using the CST MS solver. This design step consists
of choosing the appropriate properties and sizes of permanent
magnets using an iterative procedure. This procedure aims to
achieve an internal field Hi as close as possible to 51 kA/m
and as stable as possible in all ferrites. At each iteration, Hi is
plotted in several ferrite planes. If the conditions of uniformity
are not fulfilled, another iteration is performed with different
radius and thickness until a correct result is obtained.

Finally, an electromagnetic/magnetostatic (MS-EM)
co-simulation considering this real dc magnetic field
generated by magnets is performed to model the complete
design of the circulator, that is, including connectors,
soldering, and so on (see Fig. 14).

The MS-EM co-simulation S-parameters’ results are pre-
sented in Fig. 15.

As expected, the simulation results show a unidirectional
circulation phenomenon around 5 and 10.3 GHz with a good
isolation (Iso) and low insertion losses.

To validate these results, a prototype of this circulator is
realized as shown in Fig. 16.

The structure is biased by two ferrite strontium magnets
with 4300 G of remanent field. The measured S-parameters are
presented in Fig. 17 and compared with those simulated with a

Fig. 16. Prototype of the unidirectional circulator.

Fig. 17. Unidirectional dual-band ferrite circulator with weak bias field:
MS-EM co-simulation and measurement.

relative permittivity of 13.4 instead of 14, which corresponds
to an error of 4.3%. This error is consistent with the 5%
accuracy given above.

The measurement results are close to the simulation and
exhibit a unidirectional circulation direction. The RL and
Iso are better than 20 dB on the [4.9–5.1 GHz] and
[10.3–10.6 GHz] frequency bands with insertion losses lower
than 0.78 and 0.45 dB, respectively.

For some specific applications, the required Iso is only
15 dB. With such requirements, the two BWs are better than
600 MHz.

Retro-simulations were carried out and it was shown that
the spurious peaks in the measurements came from a minor
shift in the alignment of the two ferrite disks.

Table II summarizes these performances and compares them
with the measurement results in strong field of a unidirectional
circulator presented in [7]. BWs are given for an Iso and RLs
greater than 15 and 20 dB, respectively.

Table II shows that the objective of increasing the working
frequency BW for a dual-band circulator is achieved because
BWs have been almost doubled compared with previous stud-
ies presented in the literature. However, the comparison with
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TABLE II

MEASUREMENT RESULTS’ COMPARISON OF THE UNIDIRECTIONAL DUAL-BAND CIRCULATOR WITH THE LITERATURE

Fig. 18. Central conductor WYE with stubs with W = 2.8 mm and EM
simulations of uncoupled ferrite resonator.

the single-band stripline circulators [26]–[29] shows that better
BWs can be reached if only one frequency band is targeted.

B. Bidirectional Dual-Band Circulator

In this paragraph, the design of a second dual-band circula-
tor is presented. Section II showed that the order of appearance
of the HE±21 modes can be inverted by changing the width of
the WYE central conductor, which will lead to the inversion
of the circulation direction on the second frequency band.
Therefore, the ferrite disks used are the same as for the
previous circulator design with the same dc magnetic field
inside the ferrite disks’ Hi of 51 kA/m. The only change with
the previous circulator is the width of the central conductor,
because it is now equal to 2.8 mm.

As for the previous paragraph, the eigenmodes’ frequencies
are obtained with the |S11|-parameter of the weakly excited
WYE resonator with linewidth of 2.8 mm (Fig. 18).

The resonance frequencies of eigenmodes are around an
average of 6 GHz for the fundamental modes and around
10.5 GHz for the upper modes HE±21. The expected circula-
tion frequencies of the circulator after coupling are therefore
around 6 and 10.5 GHz.

As for the previous case, it is necessary to simultaneously
couple the fundamental and the upper modes for exhibiting
a circulation phenomenon on the two frequency bands. In
this objective, the width of the feeding stripline has to be
dimensioned. Fig. 19 presents the RL for different stripline
widths S.

A circulation phenomenon appears simultaneously on the
two frequency bands with good performances when S =
7.2 mm.

This line with such dimensions has a characteristic
impedance of 32 �. As this impedance differs from 50 �, a
matching circuit must be used to connect the circulator device
to 50-� SMA connectors.

The matching circuit needs to convert an impedance of
32 to 50 � on two frequency bands. A dual-band matching

Fig. 19. |S11| parameters for different stripline widths.

Fig. 20. (a) Numerical model of two-section dual-band Chebyshev impedance
transformer and (b) coupled resonator with matching step.

method presented in [30] is used and consists of two sections
of λ/4 lines. The wavelength is calculated using the average
frequency between 6.1 and 10.5 GHz, that is, 8.3 GHz. This
leads to adding two lines of 9.15-mm long with characteristic
impedances of 36 and 44 � which allow an impedance
matching from 32 to 50 � at 6.1 and 10.5 GHz.

The matching circuit [Fig. 20(a)] has been simulated using
CST and shows that it involves losses of 0.007 dB at 6.1 GHz
and 0.009 dB at 10.5 GHz. These losses are very small and
not significant compared with circulator losses.

This transformer is then integrated to the circulator struc-
ture, as presented in Fig. 20(b).

The circulator is now adapted to 50 � and the connec-
tors can be added. The next design step is the same as in
Section III-A and consists of the MS-EM co-simulation. The
magnets are the same as previously used since ferrites and dc
magnetic field inside the ferrite disks are the same. The final
design and the realized prototype are presented in Fig. 21.
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TABLE III

MEASUREMENT RESULTS’ COMPARISON OF THE BIDIRECTIONAL DUAL-BAND CIRCULATOR WITH THE LITERATURE

Fig. 21. Bidirectional dual-band ferrite circulator with weak bias field:
complete numerical model after MS-EM co-simulation and prototype.

Fig. 22. Bidirectional dual-band ferrite circulator with weak bias field:
MS-EM co-simulation and measurement.

As with the unidirectional case, the simulation is done with
a relative permittivity of 13.4 instead of 14. As expected,
the measured and simulated results exhibit a bidirectional
circulation direction (Fig. 22).

The RL and Iso are better than 20 dB on the
[5.5–6.3 GHz] and [10.6–10.8 GHz] frequency bands with
insertion losses lower than 0.65 and 0.75 dB, respectively.
With an Iso requirement of 15 dB, the BWs are larger than
1.1 GHz for the first band and 360 MHz for the second band.

Table III summarizes these performances and compares
them with the measurement results in strong field of a bidi-
rectional circulator presented in [7].

Similar to the unidirectional circulator, Table III shows
that the objective of increasing the working frequency BW
is met with a real improvement on the first frequency band.
Moreover, when comparing BWs with the commercial stripline
circulators [26], the first BW is better than the one of a single-
band circulator operating at the same frequency. The second
band is still narrower than the commercial standards. These
narrower BWs result from the challenge of simultaneously
coupled fundamental and upper modes.

IV. CONCLUSION

In this article, the first demonstration of a dual-band circula-
tor operating on the weak field conditions has been presented.
The frequency gap between the two operating bands has been
chosen and is perfectly mastered. This has been possible,
thanks to the development of a reliable methodology based on
an eigenmodes analysis, which takes into account the influence
of the shape and dimensions of the central conductor and
the intrinsic ferrite properties. The parameters that affect the
frequency ratio between counter-rotating modes and between
the fundamental and upper modes have been identified, thanks
to modal analyses. Indeed, these eigenmode analyses are at the
basis of our methodology since they allow, according to the
frequency specifications given by one or more applications, to
determine the properties of ferrite resonators (4πMs, Hi,…)
and the shapes of the central conductors. In addition to
providing operating frequencies, these modal analyses can also
predetermine the direction of circulation. Indeed, we have
shown that by simply changing the central conductor, the
upper modes’ order can be reversed, leading to the change
in the circulation direction. Finally, the measurement results
have been compared with the ones presented in the literature
and exhibit that working in the weak field area allows a great
improvement of working BWs.
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